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Abstract A delay-dependent H∞ filtering for Markovian jump systems with time-
varying delays is studied based on a piecewise analysis approach. Firstly, by exploit-
ing delay partitioning-based Lyapunov function, a new delay-dependent criterion is
derived for the H∞ performance analysis of the filtering-error systems, which can
lead to much less conservative analysis results. Secondly, based on the criterion ob-
tained, the gain of filter can be obtained in terms of linear matrix inequalities (LMIs).
Finally, numerical examples are given to demonstrate the effectiveness of the pro-
posed method.

Keywords Time delay systems · Piecewise analysis method · H∞ filter · Markovian
jump systems

1 Introduction

During the past few decades, Markovian jump systems (MJSs) have attracted much
attention [5, 16, 18, 25, 27, 31, 37, 38]. Typically, MJSs can be regarded as a special
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class of hybrid systems with finite operation modes whose structures are subject to
random abrupt changes. The system parameters usually jump among finite modes,
and the mode switching is governed by a Markov process. MJSs have many applica-
tions, such as fault-tolerant flight control systems, economic systems, solar thermal
receivers, and power systems. Over the past decades, a great number of important
results related to such systems have been reported in the literature [17, 23, 24, 28, 29,
39, 42] and the references therein.

It is worth mentioning that the H∞ filtering technique introduced in [4] has re-
ceived increasing attention, see, for example, [6, 14, 35, 36]. The H∞ filtering prob-
lem is to design an estimator to estimate the unknown state combination via output
measurement, which guarantees that the L2-induced gain from the external distur-
bance to the estimation error is less than a prescribed level. In recently years, the H∞
filtering for time-delay systems has also received increasable attention since time
delays are frequently encountered in many dynamic systems such as chemical or
process control systems and networked control systems, and it is often a source of
instability and oscillation in a filter system.

As of now, the stability criterion for the existence of a suitable filter can be classi-
fied into two categories, namely delay-independent filtering [19] and delay-dependent
filtering [1, 11, 12, 15, 20, 32, 40, 41]. Since delay-independent criterion tends to be
conservative, especially when the delay is small, much attention has been paid to
the delay-dependent type. The main objective of the delay-dependent H∞ filtering is
to obtain a filter such that the filtering error system either allows a maximum delay
bound for a fixed H∞ performance or achieves a minimum H∞ performance for a
given delay bound.

This paper address the problem of H∞ filter design for MJSs with interval time-
varying delay. Based on a piecewise analysis method, the variation interval of the
time delay is divided equally into two subintervals, by checking the variation of deriv-
ative of a Lyapunov functional in each subinterval, the convexity of matrix function
method and the free-weighting matrix method are fully used in this paper. Differ-
ent techniques are used in the derivation of the Lyapunov functional, and some novel
delay-dependent criteria for asymptotic stability is derived in the form of LMIs. Com-
pared with the existing method [9, 30], the conservativeness of the derived H∞ per-
formance analysis results is further reduced, and novel H∞ filter design criteria are
obtained. Examples used in [9, 30] are employed to show the effectiveness and less
conservativeness of the proposed methods.

Notation: R
n and R

n×m denote the n-dimensional Euclidean space and the set of
n×m real matrices; the superscript “T ” stands for matrix transposition; I is the iden-
tity matrix of appropriate dimension; ‖ · ‖ stands for the Euclidean vector norm or the
induced matrix 2-norm as appropriate; the notation X > 0 (respectively, X ≥ 0) for
X ∈ R

n×n means that the matrix X is real symmetric positive definite (respectively,
positive semidefinite). When x is a stochastic variable, E{x} stands for the expec-
tation of x. For a matrix B and two symmetric matrices A and C,

[
A ∗
B C

]
denotes a

symmetric matrix, where ∗ denotes the entries implied by symmetry.
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2 Systems Description and Preliminaries

Fix a probability space (Ω , F , P ) and consider the following class of linear systems
with Markovian jump parameters and time-varying delays (�):

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = A(θt )x(t) + Ad(θt )x(t − τ(t)) + Aω(θt )ω(t),

y(t) = C(θt )x(t) + Cd(θt )x(t − τ(t)) + Cω(θt )ω(t),

z(t) = L(θt )x(t) + Ld(θt )x(t − τ(t)) + Lω(θt )ω(t),

x(t) = φ(t), ∀t ∈ [−τM,−τm],
(1)

where x(t) ∈ R
n is the state vector, y(t) ∈ R

r is the measurement vector, ω(t) ∈
L2[0,∞) is the exogenous disturbance signal, z(t) ∈ R

p is the signal to be estimated,
{θt } is a continuous-time Markovian process with right-continuous trajectories and
taking values in a finite set S = {1,2, . . . , N } with stationary transition probabilities

Prob{θt+h = j |θt = i} =
{

πijh + o(h), i �= j,

1 + πiih + o(h), i = j.
(2)

In the above, h > 0, limh→0
o(h)
h

= 0, and πij ≥ 0 for j �= i is the transition rate from
mode i at time t to the mode j at time t + h, and

πii = −
N∑

j=1,j �=i

πij . (3)

In the system given by (1), the time delay τ(t) is a time-varying continuous func-
tion satisfying the following assumption:

0 ≤ τm ≤ τ(t) ≤ τM < ∞, τ̇ (t) ≤ μ, ∀t > 0, (4)

where τm is the lower bound, and τM is the upper bound of the communication delay.
In this paper, we consider the following filter for system (1):

⎧
⎨

⎩

˙̂x(t) = A(θt )x̂(t) + Ad(θt )x̂(t − τ(t)) + G(θt )(ŷ(t) − y(t)),

ŷ(t) = C(θt )x̂(t) + Cd(θt )x̂(t − τ(t)),

ẑ(t) = L(θt )x̂(t) + Ld(θt )x̂(t − τ(t)).

(5)

The set S comprises the various operation modes of system (1), and for each possible
value of θt = i, i ∈ S , the matrices associated with “ith mode” will be denoted by

Ai := A(θt = i), Adi := Ad(θt = i), Aωi := Aω(θt = i),

Ci := C(θt = i), Cdi := Cd(θt = i), Cωi := Cω(θt = i),

Li := L(θt = i), Ldi := Ld(θt = i), Lωi := Lω(θt = i),

where Ai,Adi,Aωi,Ci,Cdi,Cωi,Li,Ldi,Lωi are constant matrices for any i ∈ S .
It is assumed that the jumping process {θt } is accessible, i.e., the operation mode of
system (�) is known for every t ≥ 0.
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Let e(t) = x̂(t)−x(t) and z̃(t) = ẑ(t)− z(t). Then we have the following filtering
error system:

{
ė(t) = Āie(t) + Ādie(t − τ(t)) + Āωiω(t),

z̃(t) = Lie(t) + Ldie(t − τ(t)) − Lωiω(t),
(6)

where Āi = Ai + GiCi, Ādi = Adi + GiCdi, Āωi = −Aωi − GiCωi.

The H∞ filtering problem addressed in this paper is to design a filter of form (5)
such that

• The filtering error system (6) with ω(t) = 0 is exponentially stable;
• The H∞ performance ‖z̃(t)‖2 < γ ‖ω(t)‖2 is guaranteed for all nonzero ω(t) ∈

L2[0,∞) and a prescribed γ > 0 under the condition e(t) = 0 ∀t ∈ [−τM,−τm].
The following lemmas and definitions are needed in the proof of our main results.

Lemma 1 [7] For any constant matrix R ∈ R, R = RT > 0, constant τM > 0, and
vector function ẋ : [−τM,0] → R

n so that the following integration is well defined,
the following condition holds:

−τM

∫ t

t−τM

ẋT (s)Rẋ(s) ds ≤
[

x(t)

x(t − τM)

]T [−R R

R −R

][
x(t)

x(t − τM)

]
. (7)

Lemma 2 [34] Suppose that 0 ≤ τm ≤ τ(t) ≤ τM , and Ξ1, Ξ2, and Ω are constant
matrices of appropriate dimensions. Then

(
τ(t) − τm

)
Ξ1 + (

τM − τ(t)
)
Ξ2 + Ω < 0 (8)

if and only if

(τM − τm)Ξ1 + Ω < 0 (9)

and

(τM − τm)Ξ2 + Ω < 0. (10)

Definition 1 System (6) is said to be exponentially stable in the mean-square sense
(ESMSS), if there exist constants α > 0 and λ > 0 such that for all t > 0,

E
{∥∥x(t)

∥∥2}≤ αe−λt sup
−τM<s<0

{∥∥φ(s)
∥∥2}

. (11)

Definition 2 For a given function V : Cb
F0

([−τM,0],Rn) × S → R, its infinitesimal
operator L [13] is defined as

LV (xt ) = lim
→0+

1



[
E
(
V (xt+|xt ) − V (xt )

)]
. (12)
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3 Main Results

In this section, we will concentrate our attention on the performance analysis for
system (6) for τ(t) satisfying (4).

Similarly to [33], we divide the variation interval of the delay into l parts with
equal length. Define

τi = τm + i(τM − τm)

l
, i = 1,2, . . . , l. (13)

Then, [τm, τM ] = [τm, τ1]⋃l−1
i=1(τi, τi+1]. In the proof of our main results, we only

discuss the case where l = 2. From the following discussion it can be seen that the
proposed method of this paper can also be easily extended to the cases with l being
any finite integer.

Define

δ = τM − τm

2
.

Then

τ1 = τm + δ = τm + τM

2
.

Furthermore, define a new vector

ζ T (t) = [
eT (t) eT

(
t − τ(t)

)
eT (t − τm) eT (t − τ1) eT (t − τM) ωT (t)

]

and two matrices

Γ1 = [
Āi Ādi 0 0 0 Āωi

]
, Γ2 = [

Li −Ldi 0 0 0 −Lωi

]
.

Rewrite (6) as
{

ė(t) = Γ1ζ(t),

z̃(t) = Γ2ζ(t).
(14)

On the basis of (14), we get the following results.

Theorem 1 For some given constants 0 ≤ τm ≤ τM and γ , system (6) is ESMSS with
a prescribed H∞ performance γ if there exist Pi > 0, Q1 > 0, Q2 > 0, Q3 > 0,
Q4i > 0, R1 > 0, R2 > 0, R3 > 0, Z1 > 0, Z2 > 0, Z3 > 0, Mik , Nik , Tik , and Sik

(i ∈ S, k = 1,2, . . . ,6) with appropriate dimensions such that the following matrix
inequalities hold:

Ψ =
⎡

⎣
Ψ11 + Γ + Γ T ∗ ∗

Ψ̂21 Ψ22 ∗
Ψ31(s) 0 −R2

⎤

⎦< 0, s = 1,2, (15)

Ω =
⎡

⎣
Ω11 + Υ + Υ T ∗ ∗

Ψ21 Ψ22 ∗
Ω31(s) 0 −R3

⎤

⎦< 0, s = 1,2, (16)
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N∑

j=1

πijQ4j ≤ Zk, k = 1,2,3, (17)

where

Ψ11 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

�1 ∗ ∗ ∗ ∗ ∗
ĀT

diPi −(1 − μ)Q4i ∗ ∗ ∗ ∗
R1 0 −Q1 − R1 ∗ ∗ ∗
0 0 0 −Q2 − R3

δ
∗ ∗

0 0 0 R3
δ

−Q3 − R3
δ

∗
ĀT

ωiPi 0 0 0 0 −γ 2I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

Ω11 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

�1 ∗ ∗ ∗ ∗ ∗
ĀT

diPi −(1 − μ)Q4i ∗ ∗ ∗ ∗
R1 0 −Q1 − R1 − R2

δ
∗ ∗ ∗

0 0 R2
δ

−Q2 − R2
δ

∗ ∗
0 0 0 0 −Q3 ∗

ĀT
ωiPi 0 0 0 0 −γ 2I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

Ψ21 =

⎡

⎢⎢⎢
⎣

τmR1Āi τmR1Ādi 0 0 0 τmR1Āωi√
δR2Āi

√
δR2Ādi 0 0 0

√
δR2Āωi√

δR3Āi

√
δR3Ādi 0 0 0

√
δR3Āωi

Li Ldi 0 0 0 −Lωi

⎤

⎥⎥⎥
⎦

,

Ψ22 = diag{−R1,−R2,−R3,−I },
Ψ31(1) = √

δMT
i , Ψ31(2) = √

δNT
i ,

Ω31(1) = √
δT T

i , Ω31(2) = √
δST

i ,

Γ = [
0 −Mi + Ni Mi −Ni 0 0

]
,

Υ = [
0 −Ti + Si 0 Ti −Si 0

]
,

�1 = PiĀi + ĀT
i Pi + Q1 + Q2 + Q3 + Q4i

− R1 + τmZ1 + δZ2 + δZ3 +
N∑

j=1

πijPj .

Proof Let xt (s) = x(t + s), −τ(t) ≤ s ≤ 0. Then, similarly to [2], {(xt , θt ), t ≥ 0} is
a Markov process. Construct a Lyapunov functional candidate as

V (xt , θt ) =
4∑

i=1

Vi(xt , θt ), (18)
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where

V1(xt , θt ) = eT (t)P (θt )e(t),

V2(xt , θt ) =
∫ t

t−τm

eT (s)Q1e(s) ds +
∫ t

t−τ1

eT (s)Q2e(s) ds +
∫ t

t−τM

eT (s)Q3e(s) ds

+
∫ t

t−τ(t)

eT (s)Q4(θt )e(s) ds,

V3(xt , θt ) = τm

∫ t

t−τm

∫ t

s

ėT (v)R1ė(v) dv ds +
∫ t−τm

t−τ1

∫ t

s

ėT (v)R2ė(v) dv ds

+
∫ t−τ1

t−τM

∫ t

s

ėT (v)R3ė(v) dv ds,

V4(xt , θt ) =
∫ t

t−τm

∫ t

s

eT (v)Z1e(v) dv ds +
∫ t−τm

t−τ1

∫ t

s

eT (v)Z2e(v) dv ds

+
∫ t−τ1

t−τM

∫ t

s

eT (v)Z3e(v) dv ds.

Let L be the weak infinite generator of the random process {xt , θt }. Then, for each
θt = i (i ∈ S), we have

L
[
V (xt , θt )

] ≤ eT (t)

(

2PiĀi + Q1 + Q2 + Q3 + Q4i

+ τmZ1 + δZ2 + δZ3 +
N∑

j=1

πijPj

)

e(t)

+ 2eT (t)PiĀdie
(
t − τ(t)

)+ 2eT (t)PiĀωiω(t)

− eT (t − τm)Q1e(t − τm) − eT (t − τ1)Q2e(t − τ1)

− eT (t − τM)Q3e(t − τM) − (1 − μ)eT
(
t − τ(t)

)
Q4ie

(
t − τ(t)

)

+
∫ t

t−τ(t)

eT (s)

(
N∑

j=1

πijQ4j

)

e(s) ds

+ ėT (t)
(
τ 2
mR1 + δR2 + δR3

)
ė(t) − τm

∫ t

t−τm

ėT (s)R1ė(s) ds

−
∫ t−τm

t−τ1

ėT (s)R2ė(s) ds −
∫ t−τ1

t−τM

ėT (s)R3ė(s) ds

−
∫ t

t−τm

eT (s)Z1e(s) ds −
∫ t−τm

t−τ1

eT (s)Z2e(s) ds

−
∫ t−τ1

t−τM

eT (s)Z3e(s) ds. (19)
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Since

∫ t

t−τ(t)

eT (s)

(
N∑

j=1

πijQ4j

)

e(s) ds =
∫ t−τ1

t−τ(t)

eT (s)

(
N∑

j=1

πijQ4j

)

e(s) ds

+
∫ t−τm

t−τ1

eT (s)

(
N∑

j=1

πijQ4j

)

e(s) ds

+
∫ t

t−τm

eT (s)

(
N∑

j=1

πijQ4j

)

e(s) ds (20)

from (17) and (20) we have

∫ t

t−τ(t)

eT (s)

(
N∑

j=1

πijQ4j

)

e(s) ds −
∫ t

t−τm

eT (s)Z1e(s) ds

−
∫ t−τm

t−τ1

eT (s)Z2e(s) ds −
∫ t−τ1

t−τM

eT (s)Z3e(s) ds

=
∫ t

t−τm

eT (s)

(
N∑

j=1

πijQ4j − Z1

)

e(s) ds

+
∫ t−τm

t−τ1

eT (s)

(
N∑

j=1

πijQ4j − Z2

)

e(s) ds

+
∫ t−τ1

t−τ(t)

eT (s)

(
N∑

j=1

πijQ4j

)

e(s) ds −
∫ t−τ1

t−τM

eT (s)Z3e(s) ds

≤
∫ t−τ1

t−τ(t)

eT (s)Z3e(s) ds −
∫ t−τ1

t−τM

eT (s)Z3e(s) ds ≤ 0. (21)

Applying Lemma 1, we have

−τm

∫ t

t−τm

ėT (s)R1ė(s) ds ≤
[

e(t)

e(t − τm)

]T [−R1 R1
R1 −R1

][
e(t)

e(t − τm)

]
. (22)

Combining (19, 21, 22), we obtain

L
[
V (xt , θt )

]− γ 2ωT (t)ω(t) + z̃T (t)z̃(t)

≤ eT (t)

(

2PiĀi + Q1 + Q2 + Q3 + Q4i + τmZ1 + δZ2 + δZ3 +
N∑

j=1

πijPj

)

e(t)

+ 2eT (t)PiĀdie
(
t − τ(t)

)+ 2eT (t)PiĀωiω(t) − eT (t − τm)Q1e(t − τm)



Circuits Syst Signal Process (2011) 30:1253–1273 1261

− eT (t − τ1)Q2e(t − τ1) − eT (t − τM)Q3e(t − τM)

− (1 − μ)eT
(
t − τ(t)

)
Q4ie

(
t − τ(t)

)+ ėT (t)
(
τ 2
mR1 + δR2 + δR3

)
ė(t)

+
[

e(t)

e(t − τm)

]T [−R1 R1
R1 −R1

][
e(t)

e(t − τm)

]
−
∫ t−τm

t−τ1

ėT (s)R2ė(s) ds

−
∫ t−τ1

t−τM

ėT (s)R3ė(s) ds − γ 2ωT (t)ω(t) + ζ T (t)Γ T
2 Γ2ζ(t). (23)

It is noted that, for any t ∈ R+, τ(t) ∈ [τm, τ1] or τ(t) ∈ (τ1, τM ].
Define two sets

Ω1 = {
t : τ(t) ∈ [τm, τ1]

}
, (24)

Ω2 = {
t : τ(t) ∈ (τ1, τM ]}. (25)

In the following, we will discuss the variation of LV (xt , θt ) in two cases, that is,
t ∈ Ω1 or t ∈ Ω2.

Case 1: t ∈ Ω1, i.e., τ(t) ∈ [τm, τ1].

By using Lemma 1 we have

−
∫ t−τ1

t−τM

ėT (s)R3ė(s) ds ≤ 1

δ

[
e(t − τ1)

e(t − τM)

]T [−R3 R3
R3 −R3

][
e(t − τ1)

e(t − τM)

]
. (26)

Employing the free matrix method, we have

2ζ T (t)Mi

[
e(t − τm) − e

(
t − τ(t)

)−
∫ t−τm

t−τ(t)

ė(s) ds

]
= 0, (27)

2ζ T (t)Ni

[
e
(
t − τ(t)

)− e(t − τ1) −
∫ t−τ(t)

t−τ1

ė(s) ds

]
= 0, (28)

where

MT
i = [

MT
i1 MT

i2 MT
i3 MT

i4 MT
i5 MT

i6

]
,

NT
i = [

NT
i1 NT

i2 NT
i3 NT

i4 NT
i5 NT

i6

]

and i ∈ S .
There exists R2 such that

−2ζ T (t)Mi

∫ t−τm

t−τ(t)

ė(s) ds ≤ (
τ(t) − τm

)
ζ T (t)MiR

−1
2 MT

i ζ(t)

+
∫ t−τm

t−τ(t)

ėT (s)R2ė(s) ds, (29)
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−2ζ T (t)Ni

∫ t−τ(t)

t−τ1

ė(s) ds ≤ (
τ1 − τ(t)

)
ζ T (t)NiR

−1
2 NT

i ζ(t)

+
∫ t−τ(t)

t−τ1

ėT (s)R2ė(s) ds. (30)

Adding (27) and (28) to the right of (23) and substituting (26), (29), and (30) into
(23), we have

L
[
V (xt , θt )

]− γ 2ωT (t)ω(t) + z̃T (t)z̃(t)

≤ ζ T (t)

[
Ψ11 + Γ + Γ T ∗

Ψ21 Ψ22

]
ζ(t)

+ (
τ(t) − τm

)
ζ T (t)MiR

−1
2 MT

i + (
τ1 − τ(t)

)
ζ T (t)NiR

−1
2 NT

i ζ(t). (31)

Using Lemma 2 and Schur complement, it is easy to see that (15) with s = 1,2 are
sufficient conditions to guarantee

L
[
V (xt , θt )

]− γ 2ωT (t)ω(t) + z̃T (t)z̃(t) < 0. (32)

Case 2: t ∈ Ω2, i.e., τ(t) ∈ (τ1, τM ].

By using Lemma 1 we have

−
∫ t−τm

t−τ1

ėT (s)R2ė(s) ds ≤ 1

δ

[
e(t − τm)

e(t − τ1)

]T [−R2 R2
R2 −R2

][
e(t − τm)

e(t − τ1)

]
. (33)

Employing the free matrix method, we have

2ζ T (t)Ti

[
e(t − τ1) − e

(
t − τ(t)

)−
∫ t−τ1

t−τ(t)

ė(s) ds

]
= 0, (34)

2ζ T (t)Si

[
e
(
t − τ(t)

)− e(t − τM) −
∫ t−τ(t)

t−τM

ė(s) ds

]
= 0, (35)

where

T T
i = [

T T
i1 T T

i2 T T
i3 T T

i4 T T
i5 T T

i6

]
,

ST
i = [

ST
i1 ST

i2 ST
i3 ST

i4 ST
i5 ST

i6

]

and i ∈ S .
There exists R3 such that

−2ζ T (t)Ti

∫ t−τ1

t−τ(t)

ė(s) ds ≤ (
τ(t) − τ1

)
ζ T (t)TiR

−1
3 T T

i ζ(t)

+
∫ t−τ1

t−τ(t)

ėT (s)R3ė(s) ds, (36)
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−2ζ T (t)Si

∫ t−τ(t)

t−τM

ė(s) ds ≤ (
τM − τ(t)

)
ζ T (t)SiR

−1
3 ST

i ζ(t)

+
∫ t−τ(t)

t−τM

ėT (s)R3ė(s) ds. (37)

Adding (34) and (35) to the right of (23) and substituting (33), (36), and (37) into
(23), we have

L
[
V (xt , θt )

]− γ 2ωT (t)ω(t) + z̃T (t)z̃(t)

≤ ζ T (t)

[
Ω11 + Υ + Υ T ∗

Ψ21 Ψ22

]
ζ(t)

+ (
τ(t) − τ1

)
ζ T (t)TiR

−1
3 T T

i ζ(t) + (
τM − τ(t)

)
ζ T (t)SiR

−1
3 ST

i ζ(t). (38)

Using Lemma 2 and Schur complement, it is easy to see that (16) with s = 1,2 are
sufficient conditions to guarantee

L
[
V (xt , θt )

]− γ 2ωT (t)ω(t) + z̃T (t)z̃(t) < 0. (39)

Then, the following inequality can be concluded:

E
{

LV (xt , i, t)
}

< −λmin(Ψ,Ω)E
{
ζ T (t)ζ(t)

}
. (40)

Define a new function as

W(xt , i, t) = eεtV (xt , i, t). (41)

Its infinitesimal operator L is given by

W (xt , i, t) = εeεtV (xt , i, t) + eεt LV (xt , i, t). (42)

By the generalized Itô formula[13], we can obtain from (42) that

E
{
W(xt , i, t)

}− E
{
W(x0, i)

} =
∫ t

0
εeεsE

{
V (xs, i)

}
ds

+
∫ t

0
eεsE

{
LV (xs, i)

}
ds. (43)

Then, using a method similar to that in [31], we can see that there exists a positive
number α such that for t > 0,

E
{
V (xt , i, t)

}≤ α sup
−τM≤s≤0

{∥∥φ(s)
∥∥2}

e−εt . (44)

Since V (xt , i, t) ≥ {λmin(Pi)}xT (t)x(t), it can be shown from (44) that for t ≥ 0,

E
{
xT (t)x(t)

}≤ ᾱ−εt sup
−τM≤s≤0

{∥∥φ(s)
∥∥2}

, (45)

where ᾱ = α/(λminPi). Recalling Definition 1, the proof can be completed. �
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Remark 1 In the above proof, it should be noted that V4(xt , θt ) is employed in the
Lyapunov function and

∫ t

t−τ(t)
xT (s)(

∑N
j=1 πijQ2j )x(s) ds is separated into three

parts. From Sect. 5 containing the examples we can see that this method is less con-
servative than the existing ones [29, 30].

Remark 2 Theorem 1 provides a delay-dependent stability condition for MJS with
interval time-varying delays.Throughout the proof of Theorem 1, it can be seen that
the convexity property of the matrix inequality is treated in terms of Lemma 2, which
need not enlarge τ(t) to τM ; therefore the commonly existing conservatism caused
by this kind of enlargement in [3, 10, 21, 22, 26] can be avoided, which will reduce
the conservativeness of the result.

Remark 3 To further reduce the conservatism, we can divide the variation of the
delay into k (k ≥ 3) parts with equal length. It can be easily extended by the proposed
method in Theorem 1. For the brevity of the analysis, we omit it here.

As a special case, we consider τ̇ (t) = 0, that is, the time delay τ(t) is a constant.
In this case, system (6) reduces to the system

{
ė(t) = Āie(t) + Ādie(t − τ) + Āωiω(t),

z̃(t) = Lie(t) + Ldie(t − τ) − Lωiω(t),
(46)

where τ denotes the constant time delay of the state in the system.
Using a method similar to that used in [5], the following result can be obtained.

Theorem 2 For some given constants τ , d , and γ , system (46) is ESMSS with a
prescribed H∞ performance γ if there exist Pi > 0, Q1 > 0 , Q2 > 0, Ri > 0, and
Z > 0 (i ∈ S ) with appropriate dimensions such that the following matrix inequalities
hold:

Ψ =
⎡

⎣
Ψ11 + Ri + τ

d
Z ∗ ∗

Ψ21 Ψ22 ∗
Ψ31 Ψ32 Ψ33

⎤

⎦< 0, (47)

N∑

j=1

πijRj ≤ Z, (48)

where

Ψ11 =

⎡

⎢⎢⎢⎢⎢
⎣

Γ ∗ ∗ ∗ ∗
d ∗ Q1 −Ri11 − d ∗ Q1 ∗ ∗ ∗

0 −Ri21 −Ri22 ∗ ∗
...

...
...

. . .
...

0 −Ri(d−1)1 −Ri(d−1)2 · · · −Ri(d−1)(d−1)

⎤

⎥⎥⎥⎥⎥
⎦

,

Ψ21 =
[
ĀT

diPi + Q2 −Rid1 −Rid2 · · · −Rid(d−1)

ĀT
ωiPi 0 0 · · · 0

]
,
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Ψ22 = diag
{−Ridd − Q2,−γ 2I

}
,

Ψ31 =
⎡

⎣

τ√
d
Q1Āi 0 0 · · · 0

τQ2Āi 0 0 · · · 0
Li 0 0 · · · 0

⎤

⎦ ,

Ψ32 =
⎡

⎣

τ√
d
Q1Ādi

τ√
d
Q1Āωi

τQ2Ādi τQ2Āωi

Ldi −Lωi

⎤

⎦ ,

Ψ33 = diag{−Q1,−Q2,−I },

Γ = PiĀi + ĀT
i Pi +

N∑

j=1

πijPj − d ∗ Q1 − Q2,

Ri =

⎡

⎢⎢⎢
⎣

Ri11 ∗ ∗ ∗
Ri21 Ri22 ∗ ∗

...
...

. . .
...

Rid1 Rid2 · · · Ridd

⎤

⎥⎥⎥
⎦

.

Proof Define the new vector

ζ T (t) =
[
eT (t) eT (t − τ

d
) eT (t − 2τ

d
) · · · eT (t − (d−1)τ

d
)

]

and choose the Lyapunov functional as

V (xt , θt ) =
4∑

i=1

Vi(xt , θt ), (49)

where

V1(xt , θt ) = eT (t)P (θt )e(t),

V2(xt , θt ) =
∫ t

t− τ
d

ζ T (s)R(θt )ζ(s) ds,

V3(xt , θt ) = τ

∫ 0

− τ
d

∫ t

t+s

ėT (v)Q1ė(v) dv ds + τ

∫ 0

−τ

∫ t

t+s

ėT (v)Q2ė(v) dv ds,

V4(xt , θt ) =
∫ 0

− τ
d

∫ t

t+s

ζ̇ T (v)Zζ̇ (v) dv ds.

Then, (47) can be obtained similarly to the proof of Theorem 1. �

4 H∞ Filter Design

In the following, we are seeking to design the H∞ filtering based on Theorems 1
and 2.
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Theorem 3 For some given constants 0 ≤ τm ≤ τM and γ , system (6) is ESMSS with
a prescribed H∞ performance γ if there exist Pi > 0, Q1 > 0, Q2 > 0, Q3 > 0,
Q4i > 0, R1 > 0, R2 > 0, R3 > 0, Z1 > 0, Z2 > 0, Z3 > 0, Mik , Nik , Tik , Sik , and
Ḡi (i ∈ S, k = 1,2, . . . ,6) with appropriate dimensions such that the following LMIs
hold for a given ε > 0:

Ψ̂ =
⎡

⎣
Ψ̂11 + Γ + Γ T ∗ ∗

Ψ̂21 Ψ̂22 ∗
Ψ31(s) 0 −R2

⎤

⎦< 0, s = 1,2, (50)

Ω̂ =
⎡

⎣
Ω̂11 + Υ + Υ T ∗ ∗

Ψ̂21 Ψ̂22 ∗
Ω31(s) 0 −R3

⎤

⎦< 0, s = 1,2, (51)

N∑

j=1

πijQ4j ≤ Zk, k = 1,2,3, (52)

where

Ψ̂11 =

⎡

⎢⎢⎢⎢⎢
⎣

�̂1 ∗ ∗ ∗ ∗ ∗
AT

diPi + CT
diḠ

T
i −(1 − μ)Q4i ∗ ∗ ∗ ∗

R1 0 −Q1 − R1 ∗ ∗ ∗
0 0 0 −Q2 − R3

δ
∗ ∗

0 0 0 R3
δ

−Q3 − R3
δ

∗
−AT

ωiPi − CT
ωiḠ

T
i 0 0 0 0 −γ 2I

⎤

⎥⎥⎥⎥⎥
⎦

,

Ω̂11 =

⎡

⎢⎢⎢⎢⎢
⎣

�̂1 ∗ ∗ ∗ ∗ ∗
AT

diPi + CT
diḠ

T
i −(1 − μ)Q4i ∗ ∗ ∗ ∗

R1 0 −Q1 − R1 − R2
δ

∗ ∗ ∗
0 0 R2

δ
−Q2 − R2

δ
∗ ∗

0 0 0 0 −Q3 ∗
−AT

ωiPi − CT
ωiḠ

T
i 0 0 0 0 −γ 2I

⎤

⎥⎥⎥⎥⎥
⎦

,

Ψ̂21 =
⎡

⎢
⎣

τmPiAi + τmḠiCi τmPiAdi + τmḠiCdi 0 0 0 −τmPiAωi − τmḠiCωi√
δPiAi + √

δḠiCi

√
δPiAdi + √

δḠiCdi 0 0 0 −√
δPiAωi − √

δḠiCωi√
δPiAi + √

δḠiCi

√
δPiAdi + √

δḠiCdi 0 0 0 −√
δPiAωi − √

δḠiCωi

Li Ldi 0 0 0 −Lωi

⎤

⎥
⎦,

Ψ̂22 = diag
{−2εPi + ε2R1,−2εPi + ε2R2,−2εPi + ε2R3,−I

}
,

�̂1 = PiAi + AT
i Pi + ḠiCi + CT

i ḠT
i + Q1 + Q2 + Q3 + Q4i

− R1 + τmZ1 + δZ2 + δZ3 +
N∑

j=1

πijPj ,

and Γ , Υ , Ψ31(s), and Ω31(s) (s = 1,2) are defined as Theorem 1.
Moreover, the filter gain in the form of (5) is given as follows:

Gi = P −1
i Ḡi . (53)
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Proof Defining Ḡi = PiGi , from (15), (16) and using Schur complement, the matrix
inequalities (15) and (16) hold if and only if

Ψ̂ =
⎡

⎣
Ψ̂11 + Γ + Γ T ∗ ∗

Ψ̂21 Ψ̆22 ∗
Ψ31(s) 0 −R2

⎤

⎦< 0, s = 1,2, (54)

Ω̂ =
⎡

⎣
Ω̂11 + Υ + Υ T ∗ ∗

Ψ̂21 Ψ̆22 ∗
Ω31(s) 0 −R3

⎤

⎦< 0, s = 1,2, (55)

where

Ψ̆22 = diag
{−PiR

−1
1 Pi,−PiR

−1
2 Pi,−PiR

−1
3 Pi,−I

}
.

Since

(
Rk − ε−1Pi

)−1(
Rk − ε−1Pi

)≥ 0, k = 1,2,3 (56)

we get

−PiR
−1
k Pi ≤ −2εPi + ε2Rk, k = 1,2,3. (57)

Substituting −PiR
−1
k Pi with εPi + ε2Rk into (54) and (55), we obtain (50) and (51);

hence, if (50) and (51) hold, then (15) and (16) hold, and from above proof we have
Gi = P −1

i Ḡi . This completes the proof. �

Remark 4 Inequality (57) is used to bound the term −PiR
−1
k Pi in (54) and (55). This

step can be improved by adopting the cone complementary algorithm [8], which is
popular in recent control designs. Here the scaling parameter ε > 0 can be used to
improve the conservatism in Theorem 3.

Similarly, the following result can be obtained for system (46).

Theorem 4 For some given constants τ , d , and γ , system (46) is ESMSS with a
prescribed H∞ performance γ if there exist Pi > 0, Q1 > 0 , Q2 > 0, Ri > 0, Z > 0,
and Ḡi (i ∈ S ) with appropriate dimensions such that the following LMIs hold for a
given ε > 0:

Ψ =
⎡

⎣
Ψ̂11 + Ri + τ

d
Z ∗ ∗

Ψ̂21 Ψ22 ∗
Ψ̂31 Ψ̂32 Ψ̂33

⎤

⎦< 0, (58)

N∑

j=1

πijRj ≤ Z, (59)

where



1268 Circuits Syst Signal Process (2011) 30:1253–1273

Ψ̂11 =

⎡

⎢⎢
⎢⎢⎢
⎣

Γ̂ ∗ ∗ ∗ ∗
d ∗ Q1 −Ri11 − d ∗ Q1 ∗ ∗ ∗

0 −Ri21 −Ri22 ∗ ∗
...

...
...

. . .
...

0 −Ri(d−1)1 −Ri(d−1)2 · · · −Ri(d−1)(d−1)

⎤

⎥⎥
⎥⎥⎥
⎦

,

Ψ̂21 =
[
AT

diPi + CT
diḠ

T
i + Q2 −Rid1 −Rid2 · · · −Rid(d−1)

−AT
ωiPi − CT

ωiḠ
T
i 0 0 · · · 0

]

,

Ψ̂31 =
⎡

⎢
⎣

τ√
d
PiAi + τ√

d
ḠiCi 0 0 · · · 0

τPiAi + τḠiCi 0 0 · · · 0

Li 0 0 · · · 0

⎤

⎥
⎦ ,

Ψ̂32 =
⎡

⎢
⎣

τ√
d
PiAdi + τ√

d
ḠiCdi − τ√

d
PiAωi − τ√

d
ḠiCωi

τPiAdi + τḠiCdi −τPiAωi − τḠiCωi

Ldi −Lωi

⎤

⎥
⎦ ,

Ψ̂33 = diag
{−2εPi + ε2Q1,−2εPi + ε2Q2,−I

}
,

Γ̂ = PiAi + AT
i Pi + ḠiCi + CT

i ḠT
i +

N∑

j=1

πijPj − d ∗ Q1 − Q2,

and Ψ22 and Ri are defined as in Theorem 2.
Moreover, the filter gain in the form of (5) is given as follows:

Gi = P −1
i Ḡi . (60)

5 Example

In this section, a well-studied example is used to illustrate the effectiveness of the
approaches proposed in this paper.

Example 1 Consider a Markovian jump system in (1) with two modes and the fol-
lowing parameters [30]:

Ā1 =
[−2.2460 −1.4410
−1.5937 −2.9289

]
, Ā2 =

[−1.8999 0.8156
0.6900 −0.7881

]
,

Ād1 =
[−0.7098 1.1908

0.6686 −3.2025

]
, Ād2 =

[−1.5198 −1.6041
−0.1567 −1.2427

]
,

Āω1 =
[

0.0403
0.6771

]
, Āω2 =

[
0.5689

−0.2556

]
,

L1 = [−0.3775 −0.2959
]
, L2 = [−1.4751 −0.2340

]
,

Ld1 = [
0 0

]
, Ld2 = [

0 0
]
, Lω1 = −0.1184, Lω2 = −0.3148.
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Table 1 Maximum allowable
values of τM for
τm = 0, μ = 0.5, and
π22 = −0.6

γ 0.4 0.8 1.2 1.6

τM by [30] 0.3359 0.3975 0.4116 0.4181

τM by Theorem 1 0.3666 0.4293 0.4450 0.4524

Table 2 Maximum allowable
values of τM for μ = 1 and
π22 = −1

γ 0.4 0.8 1.2 1.6

τM by [30] 0.2690 0.2833 0.2852 0.2858

τM by Theorem 1 0.3616 0.4206 0.4353 0.4422

Suppose that the transition probability matrix is given by π11 = −3.
For several values of μ and π22, the computation results of τM are listed in Ta-

bles 1–2. Obviously, for the same conditions of the time delay, our results are less
conservative than those in the existing references.

To illustrate the proposed method on filtering design, two examples are considered
as follows.

Example 2 Consider linear Markovian jump systems in the form (1) with two modes.
For modes 1 and 2, the dynamics of systems are described as

A1 =
⎡

⎣
−3 1 0
0.3 −2.5 1

−0.1 0.3 −3.8

⎤

⎦ , Ad1 =
⎡

⎣
−0.2 0.1 0.6
0.5 −1 −0.8
0 1 −2.5

⎤

⎦ ,

Aω1 =
⎡

⎣
1
0
1

⎤

⎦ ,

C1 = [
0.8 0.3 0

]
, Cd1 = [

0.2 −0.3 −0.6
]
, Cω1 = 0.2,

L1 = [
0.5 −0.1 1

]
, Ld1 = [

0 0 0
]
, Lω1 = 0,

A2 =
⎡

⎣
−2.5 0.5 −0.1
0.1 −3.5 0.3

−0.1 1 −2

⎤

⎦ , Ad2 =
⎡

⎣
0 −0.3 0.6

0.1 0.5 0
−0.6 1 −0.8

⎤

⎦ ,

Aω2 =
⎡

⎣
−0.6
0.5
0

⎤

⎦ ,

C2 = [
0.5 0.2 0.3

]
, Cd2 = [

0 −0.6 0.2
]
, Cω2 = 0.5,

L2 = [
0 1 0.6

]
, Ld2 = [

0 0 0
]
, Lω2 = 0.

Suppose that the transition probability matrix is given by π = [−0.5 0.5
0.3 −0.3

]
and the

initial conditions x(0) = [−0.2 0.3 0.9]T , x̂(0) = [−0.4 0.6 1.8]T .
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Fig. 1 Operation modes

By using Theorem 3 we can get the maximum time delay τM = 5.0944 for τm =
0.1, μ = 0.4, ε = 10, and γ = 0.5. The corresponding filter parameters are given as

G1 =
⎡

⎣
0.3837

−1.4310
−3.1457

⎤

⎦ , G2 =
⎡

⎣
2.2251

−0.1772
−0.6581

⎤

⎦ .

To illustrate the performance of the designed filter, choose the disturbance function
as follows:

ω(t) =
{

0.1, 2 < t < 5,

0, otherwise.

With this filter, Figs. 1–4 show the operation modes of the MJS, interval time-
varying delay, estimated signal z(t), z̃(t), and estimated signals error η(t) = z(t) −
z̃(t), respectively.

Example 3 Consider linear Markovian jump systems in the form (46) with two
modes. For modes 1 and 2, the parameters of system (46) are described as in Ex-
ample 2.

This system is nominal one considered in [9]. By Theorem 4, when ε = 10 and
γ = 1.2, for different d , the computation results of τ are listed in Table 3. Obviously,
for the same conditions for the time delay, our method can lead to less conservative
results.

When d = 4, ε = 10, and γ = 1.2, we get the maximum time delay τ = 2.2179,
and the corresponding filter parameters are given by

G1 =
⎡

⎣
0.5492
0.2716

−4.2943

⎤

⎦ , G2 =
⎡

⎣
1.3004

−1.0214
−1.0646

⎤

⎦ .
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Fig. 2 Interval time-varying
delay

Fig. 3 Estimated signals z(t)

and z̃(t)

Fig. 4 Estimated signals error
η(t) = z(t) − z̃(t)
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Table 3 Maximum allowable
values of τ for ε = 10 and
γ = 1.2

[9] d = 2 d = 3 d = 4 d = 5

τ 1.9195 2.0784 2.1886 2.2179 2.2220

6 Conclusion

In this paper, we have studied a class of H∞ filter design for Markovian jump systems
with time-varying delays via manipulating a new Lyapunov function and using the
convexity property of the matrix inequality. By using the piecewise analysis method,
LMI-based sufficient conditions for the existence of the desired H∞ filter have been
derived, which can lead to much less conservative analysis results. Finally, numeri-
cal examples have been carried out to demonstrate the effectiveness of the proposed
method.
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